Author:
Perlman Ido,Itzhaki Aviran,Malik Shoshana,Alpern Mathew
Abstract
AbstractCone photoreceptors in the turtle retina are involved in intricate neuronal interactions with other retinal neurons that modify the responses of the cones to photons absorbed in their outer segments. Therefore, the action spectra of cones strongly depend upon the conditions of measurements. This study describes an attempt to derive the action spectra of turtle cones which are the least distorted by neuronal interactions. To achieve this goal, the photoresponses of cones and horizontal cells were recorded from the turtle retina under different conditions of adaptation using different patterns of the stimulating test flashes. The sensitivity action spectra, derived from small-amplitude (<1 mV) photoresponses, were strongly affected by the recording conditions indicating the contributions of multiple neuronal inputs. Action spectra, constructed from large criterion photoresponses, were less distorted by neuronal interactions and better described the spectral properties of the “isolated” cones. The action spectra of the hyperpolarizing inputs to chromaticity-type horizontal cells were derived by stimulating these cells with mixtures of a saturating red light and a monochromatic light of different wavelength and intensity. The action spectra were constructed from the intensity of the addend component needed to “pull down” the depolarizing response to the red component by a fixed criterion. These spectra, measured in red/green and yellow/blue C-type horizontal cells, are suggested to best represent the “isolated” M-cones and S-cones, respectively.
Publisher
Cambridge University Press (CUP)
Subject
Sensory Systems,Physiology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献