The design of the optic nerve in fish

Author:

Scholes John

Abstract

AbstractFish have large eyes, with short optic nerves that are continually flexed by compensatory eye movements during swimming. Here, I review the tissue construction of the fish optic nerve, to see how the glia and axons are adapted to withstand these mechanical stresses, which are not normally encountered by CNS tissue within the skull.As in other lower vertebrates, the optic nerve astrocytes are highly unusual: their intermediate filaments are composed of cytokeratins (Giordano et al., 1989), not GFAP. Their processes are linked together by desmosomes, forming thin transverse lace-like partitions, placed at quasi-regular intervals longitudinally (Maggs & Scholes, 1990). This accordion-like arrangement is interpreted as providing a flexible tissue-skeleton for the optic nerve.A new observation is that the optic axons run in coherent parallel waves. This pattern, which is complementary to that of the astroglia, reversibly accommodates limited axial stretches. The waves are equivalent to those underlying the optical banding of Fontana (1781) in peripheral nerves, but wavelength (30 μm) and amplitude (5 μm) are about an order of magnitude less, reflecting the much smaller average size of the optic axons. The pattern also occurs in mammals, and may be restricted to the visual pathway: if present elsewhere in the CNS, nerve-fiber waves are inconspicuous at best.In fish, the astroglial partitions occur in register with the waves, suggesting that steric interactions between developing axons and glia may help to establish, or stabilize, the regular longitudinal spacing. This may have functional as well as mechanical implications, since the astrocytes form perinodal associations and their pattern is one which strongly clusters the nodes of Ranvier.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3