Author:
GILMORE RICK O.,HOU C.,PETTET M.W.,NORCIA A.M.
Abstract
Humans discriminate approaching objects from receding ones shortly after birth, and optic flow associated with self-motion may activate distinctive brain networks, including the human MT+ complex. We sought evidence for evoked brain activity that distinguished radial motion from other optic flow patterns, such as translation or rotation by recording steady-state visual evoked potentials (ssVEPs), in both adults and 4–6 month-old infants to direction-reversing optic flow patterns. In adults, radial flow evoked distinctive brain responses in both the time and frequency domains. Differences between expansion/contraction and both translation and rotation were especially strong in lateral channels (PO7 and PO8), and there was an asymmetry between responses to expansion and contraction. In contrast, infants' evoked response waveforms to all flow types were equivalent, and showed no evidence of the expansion/contraction asymmetry. Infants' responses were largest and most reliable for the translation patterns in which all dots moved in the same direction. This pattern of response is consistent with an account in which motion processing systems detecting locally uniform motion develop earlier than do systems specializing in complex, globally non-uniform patterns of motion, and with evidence suggesting that motion processing undergoes prolonged postnatal development.
Publisher
Cambridge University Press (CUP)
Subject
Sensory Systems,Physiology
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献