Visual signal processing in the macaque lateral geniculate nucleus

Author:

SEIM THORSTEIN,VALBERG ARNE,LEE BARRY B.

Abstract

AbstractComparisons of S- or prepotential activity, thought to derive from a retinal ganglion cell afferent, with the activity of relay cells of the lateral geniculate nucleus (LGN) have sometimes implied a loss, or leak, of visual information. The idea of the “leaky” relay cell is reconsidered in the present analysis of prepotential firing and LGN responses of color-opponent cells of the macaque LGN to stimuli varying in size, relative luminance, and spectral distribution. Above a threshold prepotential spike frequency, called the signal transfer threshold (STT), there is a range of more than 2 log units of test field luminance that has a 1:1 relationship between prepotential- and LGN-cell firing rates. Consequently, above this threshold, the LGN cell response can be viewed as an extension of prepotential firing (a “nonleaky relay cell”). The STT level decreased when the size of the stimulus increased beyond the classical receptive field center, indicating that the LGN cell is influenced by factors other than the prepotential input. For opponent ON cells, both the excitatory and the inhibitory response decreased similarly when the test field size increased beyond the center of the receptive field. These findings have consequences for the modeling of LGN cell responses and transmission of visual information, particularly for small fields. For instance, for LGN ON cells, information in the prepotential intensity–response curve for firing rates below the STT is left to be discriminated by OFF cells. Consequently, for a given light adaptation, the STT improves the separation of the response range of retinal ganglion cells into “complementary” ON and OFF pathways.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3