Evaluation of visual function in Royal College of Surgeon rats using a depth perception visual cliff test

Author:

Tzameret Adi,Sher Ifat,Edelstain Victoria,Belkin Michael,Kalter-Leibovici Ofra,Solomon Arieh S.,Rotenstreich Ygal

Abstract

AbstractPreserving of vision is the main goal in vision research. The presented research evaluates the preservation of visual function in Royal College of Surgeon (RCS) rats using a depth perception test. Rats were placed on a stage with one side containing an illusory steep drop (“cliff”) and another side with a minimal drop (“table”). Latency of stage dismounting and the percentage of rats that set their first foot on the “cliff” side were determined. Nondystrophic Long–Evans (LE) rats were tested as control. Electroretinogram and histology analysis were used to determine retinal function and structure. Four-week-old RCS rats presented a significantly shorter mean latency to dismount the stage compared with 6-week-old rats (mean ± standard error, 13.7 ± 1.68 vs. 20.85 ± 6.5 s, P = 0.018). Longer latencies were recorded as rats aged, reaching 45.72 s in 15-week-old rats (P < 0.00001 compared with 4-week-old rats). All rats at the age of 4 weeks placed their first foot on the table side. By contrast, at the age of 8 weeks, 28.6% rats dismounted on the cliff side and at the age of 10 and 15 weeks, rats randomly dismounted the stage to either table or cliff side. LE rats dismounted the stage faster than 4-week-old RCS rats, but the difference was not statistically significant (7 ± 1.58 s, P = 0.057) and all LE rats dismounted on the table side. The latency to dismount the stage in RCS rats correlated with maximal electroretinogram b-wave under dark and light adaptation (Spearman’s rho test = −0.603 and −0.534, respectively, all P < 0.0001), outer nuclear layer thickness (Spearman’s rho test = −0.764, P = 0.002), and number of S- and M-cones (Spearman’s rho test = −0.763 [P = 0.002], and −0.733 [P = 0.004], respectively). The cliff avoidance test is an objective, quick, and readily available method for the determination of RCS rats’ visual function.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3