Evaluating the Impact of Pharmacies on Pandemic Influenza Vaccine Administration

Author:

Schwerzmann Joy,Graitcer Samuel B.,Jester Barbara,Krahl David,Jernigan Daniel,Bridges Carolyn B.,Miller Joseph

Abstract

AbstractObjectivesThe objective of this study was to quantify the potential retail pharmacy vaccine administration capacity and its possible impact on pandemic influenza vaccine uptake.MethodsWe developed a discrete event simulation model by use of ExtendSim software (Imagine That Inc, San Jose, CA) to forecast the potential effect of retail pharmacy vaccine administration on total weekly vaccine administration and the time needed to reach 80% vaccination coverage with a single dose of vaccine per person.ResultsResults showed that weekly national vaccine administration capacity increased to 25 million doses per week when retail pharmacist vaccination capacity was included in the model. In addition, the time to achieve 80% vaccination coverage nationally was reduced by 7 weeks, assuming high public demand for vaccination. The results for individual states varied considerably, but in 48 states the inclusion of pharmacies improved time to 80% coverage.ConclusionsPharmacists can increase the numbers of pandemic influenza vaccine doses administered and reduce the time to achieve 80% single-dose coverage. These results support efforts to ensure pharmacist vaccinators are integrated into pandemic vaccine response planning. (Disaster Med Public Health Preparedness. 2017;11:587–593)

Publisher

Cambridge University Press (CUP)

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3