Identification of Keywords From Twitter and Web Blog Posts to Detect Influenza Epidemics in Korea

Author:

Woo Hyekyung,Sung Cho Hyeon,Shim Eunyoung,Lee Jong Koo,Lee Kihwang,Song Gilyoung,Cho Youngtae

Abstract

AbstractObjectiveSocial media data are a highly contextual health information source. The objective of this study was to identify Korean keywords for detecting influenza epidemics from social media data.MethodsWe included data from Twitter and online blog posts to obtain a sufficient number of candidate indicators and to represent a larger proportion of the Korean population. We performed the following steps: initial keyword selection; generation of a keyword time series using a preprocessing approach; optimal feature selection; model building and validation using least absolute shrinkage and selection operator, support vector machine (SVM), and random forest regression (RFR).ResultsA total of 15 keywords optimally detected the influenza epidemic, evenly distributed across Twitter and blog data sources. Model estimates generated using our SVM model were highly correlated with recent influenza incidence data.ConclusionsThe basic principles underpinning our approach could be applied to other countries, languages, infectious diseases, and social media sources. Social media monitoring using our approach may support and extend the capacity of traditional surveillance systems for detecting emerging influenza. (Disaster Med Public Health Preparedness. 2018; 12: 352–359)

Publisher

Cambridge University Press (CUP)

Subject

Public Health, Environmental and Occupational Health

Reference25 articles.

1. A review of feature selection techniques in bioinformatics

2. An introduction to variable and feature selection;Guyon;J Mach Learn Res,2003

3. KISDI. KISDI STAT Report (13-04): Current use of SNS Seoul, Korea; 2013.

4. Twitter: Big data opportunities

5. Internet-based surveillance systems for monitoring emerging infectious diseases

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3