Evaluating precision medicine tools in cystic fibrosis for racial and ethnic fairness

Author:

Colegate Stephen P.ORCID,Palipana Anushka,Gecili EmrahORCID,Szczesniak Rhonda D.,Brokamp Cole

Abstract

Abstract Introduction: Patients with cystic fibrosis (CF) experience frequent episodes of acute decline in lung function called pulmonary exacerbations (PEx). An existing clinical and place-based precision medicine algorithm that accurately predicts PEx could include racial and ethnic biases in clinical and geospatial training data, leading to unintentional exacerbation of health inequities. Methods: We estimated receiver operating characteristic curves based on predictions from a nonstationary Gaussian stochastic process model for PEx within 3, 6, and 12 months among 26,392 individuals aged 6 years and above (2003–2017) from the US CF Foundation Patient Registry. We screened predictors to identify reasons for discriminatory model performance. Results: The precision medicine algorithm performed worse predicting a PEx among Black patients when compared with White patients or to patients of another race for all three prediction horizons. There was little to no difference in prediction accuracies among Hispanic and non-Hispanic patients for the same prediction horizons. Differences in F508del, smoking households, secondhand smoke exposure, primary and secondary road densities, distance and drive time to the CF center, and average number of clinical evaluations were key factors associated with race. Conclusions: Racial differences in prediction accuracies from our PEx precision medicine algorithm exist. Misclassification of future PEx was attributable to several underlying factors that correspond to race: CF mutation, location where the patient lives, and clinical awareness. Associations of our proxies with race for CF-related health outcomes can lead to systemic racism in data collection and in prediction accuracies from precision medicine algorithms constructed from it.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3