Propulsive jet aerodynamics and aeroacoustics

Author:

McGuirk J. J.ORCID

Abstract

AbstractComprehensive understanding of propulsive jet aerodynamics and aeroacoustics is key to engine design for reduced jet noise and infra-red signature in civil and military aerospace, respectively. Illustrated examples are provided of other aerodynamic/aeroacoustic problems involving jet development, including chevron nozzles, increased jet/wing/flap interference (as fan diameter increases), high acoustic environment (and potentially damaging screech) of supersonic jets on carrier decks and the strongly Three-Dimensional (3D) unsteady flow during the in-ground effect operation of Short Take-Off and Vertical Landing (STOVL) aircraft. To date, laboratory/rig test measurements have primarily been used to identify design solutions; increased use of Computational Fluid Dynamics (CFD) would help achieve cost/time reductions, but Reynolds-Average Navier–Stokes (RANS) CFD with statistical turbulence modelling has proven inadequate for such flows. The scenarios described are far removed from flows used to calibrate model constants, and predictive accuracy demands detailed insight into unsteady flow. Large-Eddy Simulation (LES), whilst computationally more demanding, offers a potential solution. Research undertaken to assess LES capability to address the challenges described is reviewed here. This demonstrates that tremendous progress has been made, indicating that LES can provide sufficiently accurate predictions, representing high value for engineering design. A series of validation studies of increasing realism to practical engineering systems is presented to underpin this conclusion. Finally, areas for further work are suggested to support the combined application of RANS and LES that is probably the optimum way forward.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3