Impact of aromatic species selection and micro and bulk properties of alternative fuels on atomisation

Author:

Wijesinghe C.J.,Khandelwal B.ORCID

Abstract

AbstractThe importance of fuel injection methods and their atomisation characteristics has been well described in literature. Also, there are a large number of studies in literature detailing the impact of bulk properties of conventional fuels on atomisation and spray characteristics. However, there is a lack of knowledge on how different alternative fuels, and specifically aromatic species, impact spray and atomisation characteristics. In this investigation, the impact of alternative fuels, selected aromatic species and their properties on spray atomisation was studied. Details of how different aromatic structures, bonds and other micro properties of aromatics species impact spray and atomisation characteristics were investigated. To achieve this objective, testing was conducted using a Rolls-Royce Tay engine fuel injector. It was found that the droplet sizes in the form of the Sauter Mean Diameter (SMD) correlate well with fuel properties including density, viscosity and surface tension, which is in line with other published literature. Moreover, it was found that there are several aromatic species (ethylbenzene, cumene and tert-butylbenzene) which display improved atomisation. This indicates that the size of the aliphatic groups attached to the benzene ring in the aromatic molecule impact on the drop size and thereby the combustion characteristics. The worst performers were polyaromatic naphthalene compounds. With the increasing push for fuels with selected aromatic species in the future, this study provides knowledge on the impact of their on the atomisation characteristics.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3