Experimental and numerical investigation on a supersonic inlet with large bleed window

Author:

Yuan HC.,Zhang JS.ORCID,Wang YF.,Huang GP.

Abstract

AbstractThe design of a two-dimensional supersonic inlet with large bleed window at low Mach number was developed. Numerical simulation and wind tunnel experiments were carried out to investigate the aerodynamic performance and variable geometric rules of the inlet. The result indicates that the single-degree-of-freedom variable geometry scheme adopted in this paper guarantees the steady work of the inlet over a wide speed range. The large bleed window caused by rotation of the compression ramp appears near the throat at low Mach number. Low-pressure airflow near the bleed window neutralises the original high-pressure airflow behind the shock train, which decreases the overall pressure of the downstream region of the internal contraction section. To match the lower pressure, the structure of the shock train changes from strong $\lambda$-type to weak $\lambda$-type, and finally to a normal shock wave as backpressure increases at Mach number 2.5. Herein, the total pressure recovery coefficient of the inlet near the critical condition improves by 8.5% as the backpressure ratio (Pe/P0) adds from 13 to 14.6 at Mach number 2.5. It proves that the scheme is effective on terminal shock wave control and inlet performance improvement. In addition, due to the background wave and the bleed window, two kinds of shock wave oscillation occur when the backpressure ratio is 13.1.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference29 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3