Abstract
Abstract
This paper presents a study of a novel type of magnetic nozzle that allows for three-dimensional (3-D) steering of a plasma plume. Numerical simulations were performed using Tech-X’s USim® software to quantify the nozzle’s capabilities. A 2-D planar magnetic nozzle was applied to plumes of a nominal pulsed inductive plasma (PIP) source with discharge parameters similar to those of Missouri S&T’s Missouri Plasmoid Experiment (MPX). Argon and xenon plumes were considered. Simulations were verified and validated through a mesh convergence study as well as comparison with available experimental data. Periodicity was achieved over the simulation run time and phase angle samples were taken to examine plume evolution over pulse cycles. The resulting pressure, velocity, and density fields were analysed for nozzle angles from 0° to 14°. It was found that actual plume divergence was small compared to the nozzle angle. Even with an offset angle of 14° for the magnetic nozzle, the plume vector angle was only about 2° for argon and less than 1° for xenon. The parameters that had the most effect on the vectoring angle were found to be the coil current and inlet velocity.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献