Abstract
AbstractThe aim of this paper is to provide preliminary results on a traffic coordination framework based on stochastic task allocation. General trends and the predicted advent of personal aerial vehicles increase traffic rapidly, but current air traffic management methods admittedly cannot scale appropriately. A hierarchical system is proposed to overcome the problem, the middle layer of which is elaborated in this paper. This layer aims to enable stochastic control of traffic behaviour using a single parameter, which is achieved by applying distributed stochastic task allocation. The task allocation algorithm is used to allocate speeds to vehicles in a scalable way. By regulating the speed distribution of vehicles the conflict rates remain manageable. Multi-agent simulation results show that it is possible to control ensemble dynamics and together with that traffic safety and throughput via a single parameter. Using transient simulations the dynamic performance of the system is analysed. It is shown that the traffic conflict reduction problem can be transformed into a control design problem. The performance of a simple controller is also evaluated. It was shown that by applying the controller, quicker transients can be achieved for the mean speed of the system.
Publisher
Cambridge University Press (CUP)
Reference61 articles.
1. Transforming Civil Helicopters into Personal Aerial Vehicles: Modeling, Control, and Validation
2. Free flight concept
3. [60] Morris, C. , Peters, J. and Choroba, P. Validation of the time based separation concept at London Heathrow Airport, Tenth USA/Europe Air Traffic Management Research and Development Seminar, June, 2013.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献