Mass prediction models for air cargo challenge aircraft

Author:

Garcia G.L.,Gamboa P.V.ORCID

Abstract

AbstractDesign/Build/Fly competitions are attracting increased interest in the training of aerospace engineers at academic level worldwide. These competitions entail fundamental activities in aircraft design, optimization and manufacturing which foster student knowledge not possible in classical academic activities. Over the years, the competitiveness of these contests has increased due to the ever-increasing performance that the aircraft exhibit in the flight event. Mass prediction models, specific for competitions such as Air Cargo Challenge (ACC), are presented in this paper. These models are divided into two development methods: statistical and structure-based equations.The statistical mass models are developed based on data collected from past ACC editions where model accuracy is mainly dependent on the amount of data available. Three models are derived, one containing all available aircraft and two more obtained by dividing the aircraft into balsa- or composite-dominated structures.Using the structure-based equations method, where the amount of material required to withstand the stresses that the airplane is subjected to is determined, a model is developed for each one of the three considered wing structural concepts, namely two-cell Carbon-Fibre-Reinforced Plastic (CFRP), CFRP D-box and CFRP tube spar. The tail boom component equation is created independently, while the remaining components masses are determined from coefficients based on geometric characteristics and the computed wing or total masses. The average error associated with these models is inferior to 2% for the total mass.The results obtained from the application to the considered study cases are also presented, and the validity, accuracy, and application in terms of the design phase for each method are discussed.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference53 articles.

1. 52. Silva, F. , Palmeira, R. , Ferreira, M. , Lousada, M. , Domingues, R. and Morão, T. AERO@UBI – Air Cargo Challenge 2019, Design Report, Universidade da Beira Interior, Covilhã, 2019.

2. Design of Solar Powered Airplanes for Continuous Flight;Noth;Environ. Res,2007

3. Aircraft Conceptual Design Synthesis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3