Design and performance quantification of VTOL systems for a canard aircraft

Author:

Pedro S.,Tomás D.,Lobo do Vale J.ORCID,Suleman A.

Abstract

AbstractThe design and performance quantification of four Vertical Take-Off and Landing (VTOL) architectures for a canard-type aircraft configuration are presented. The aero-structural sizing of the canard configuration and the sizing procedure for the proposed VTOL configurations are described and discussed. The proposed VTOL architectures are based on a range of rotor distances to the centre of gravity, quad- and tri-rotor configurations, retractable front rotors and tilt rear rotors. The aerodynamic performance, total installed power and VTOL system mass were modelled and experimentally validated. The results show that a fully exposed VTOL system penalises the Lift-over-Drag (L/D) ratio significantly relative to a clean configuration. The VTOL system mass can be reduced by up to 32% by using a tilt tri-rotor configuration when compared with an equidistant quad-rotor+pusher configuration. The fraction of installed power usable for forward flight can be increased by up to 80% with a tilt configuration. For the proposed mission, the range can be significantly increased if a tri-rotor tilt configuration is adopted in place of an equidistant quad-rotor+pusher configuration.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference24 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3