The formation and growth of shock waves in the one-dimensional motion of a gas

Author:

Pillow A. F.

Abstract

In many compressible fluid flow problems the classical solution breaks down completely owing to the formation of regions of infinite acceleration in the flow field. The actual behaviour of the fluid in such cases does not seem to have been investigated mathematically and this is largely due to the difficulties which enter with non-uniform shocks. It is with these difficulties that this paper is principally concerned.The way in which discontinuities may arise mathematically in a flow field is first discussed. The equations governing the one-dimensional motion of a gas due to an accelerating piston are then set up. It is shown that when allowance is made for varying entropy conditions due to the presence of non-uniform shocks these differential equations reduce (outside the shock wave) to three first order quasilinear ones.The initial solution breaks down when a point of infinite acceleration occurs in the flow field. From this point onwards a shock wave grows in the fluid and behind it three different sets of characteristics are required to describe the flow. By working in the plane of two quantities that are constant along two different sets of characteristics, we can use the shock-jump conditions to determine the equation of the shock-line in this plane and to reduce the equations of the characteristics to three differential equations, which would be linear if the relation between the entropy and other flow variables were known.In the case of a constantly accelerating piston a first approximation is found by neglecting reflexions and entropy variations behind the shock. Using this as a basis we then find a second approximation for the entropy in the neighbourhood of the initial portion of the shock-line and show that the problem reduces to the solution of a second order linear partial differential equation. The introduction of a Riemann function and the satisfaction of the boundary conditions at the shock lead to an integral equation whose solution enables us to determine the position of the shock as a function of the time. The solution is in the form of a power series and is valid provided the shock wave does not become too strong.Finally, it is shown that if the piston is given a constant terminal velocity a reflected wave from the shock is reflected again from the piston and eventually overtakes the shock and reduces its velocity to a final steady value which is in agreement with the value arising from an impulsive start.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference4 articles.

1. Methoden der Mathematischen Physik

2. (2) Supersonic Flow and Shock Waves. Unpublished Appl. Math. Panel Report O.S.R.D. (United States, 1944).

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The analytical solution of an unsteady gas flow with shocks;Archive of Applied Mechanics (Ingenieur Archiv);1997-02

2. On one‐dimensional planar and nonplanar shock waves in a relaxing gas;Physics of Fluids;1994-06

3. Mathematical research at the Aeronautical Research Laboratories 1939–1960;The Journal of the Australian Mathematical Society. Series B. Applied Mathematics;1989-04

4. The propagation of shock waves in gases with arbitrary property gradients;Zeitschrift für angewandte Mathematik und Physik;1971-07

5. The shock-expansion method and Whitham's rule;Journal of Fluid Mechanics;1966-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3