Chain recurrence in flows on the Klein bottle

Author:

ALEXELLIS ATHANASSIOS,ATHANASSOPOULOS KONSTANTIN

Abstract

In the classical Poincaré–Bendixson theory the object of study are the limit sets of a continuous flow on the 2-sphere S2 and the behaviour of the orbits near them (see [7, 9]). In [2] the second author proved that an assertion similar to the Poincaré–Bendixson theorem is true in the wider class of the 1-dimensional invariant (internally) chain recurrent continua of flows on S2. On the other hand, it is known that among the closed 2-manifolds, the 2-sphere S2, the projective plane RP2 and the Klein bottle K2 are the only ones for which the Poincaré–Bendixson theorem is true (see [1, 8, 11]).The motivation of the present paper was to examine to what extent the main results of [2] carry over to flows on RP2 and K2. A first attempt to study chain recurrent sets of flows on closed 2-manifolds other than the 2-sphere was [3]. As one expects, the results of [2] carry over easily to RP2, since chain recurrence behaves well with respect to regular covering maps of compact manifolds, as we show in Section 3. The situation with K2 is quite different, since it is doubly covered by the 2-torus T2, where we have no Poincaré–Bendixson theorem. Actually, the Poincaré–Bendixson theorem for 1-dimensional invariant chain recurrent continua of flows on K2 is not true. For example, identifying suitably the boundary periodic orbits of a 2-dimensional Reeb flow on a closed annulus (see [7, chapter III, 2·6]) we get a flow on K2 with a 1-dimensional invariant chain recurrent continuum consisting of the unique periodic orbit and another orbit, which spirals against it in positive and negative time. As we prove in Theorem 4·4, this situation, or concatenations of it, is the only one where the Poincaré–Bendixson theorem for 1-dimensional invariant chain recurrent continua of flows on K2 is not true. Then, we are concerned with the topological structure of the 1-dimensional chain components of a flow on K2 with finitely many singularities. In Proposition 4·6 we find when such a set consists of finitely many orbits and is homeomorphic to a finite graph. An example shows that the hypothesis of Proposition 4·6 is essential. Finally, in Theorem 4·9 we give a description of the structure of the 1-dimensional chain components of a flow on K2 with finitely many singular points.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Singular hyperbolicity of star flows on surfaces;Acta Mathematica Sinica, English Series;2015-08-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3