Abstract
It is well known that Hubert's function of a homogeneous ideal in the ring of polynomials K[x0, …, xm], where K is a field and x0, …, xm are independent indeterminates over K, is, for large values of r, a polynomial in r of degree equal to the projective dimension of (1). Samuel (4) and Northcott (2) have both shown that if the field K is replaced by an Artin ring A, is still a polynomial in r for large values of r. Applying this generalization Samuel (4) has shown that in a local ring Q the length of an ideal qρ, where q is a primary ideal belonging to the maximal ideal m of Q, is, for sufficiently large values of ρ, a polynomial in ρ whose degree is equal to the dimension of Q.
Publisher
Cambridge University Press (CUP)
Reference5 articles.
1. Idealtheorie
2. Two classical theorems of ideal theory
3. On Hilbert's function, series of composition of ideals and a generalization of the theorem of Bezout;Van Der Waerden;Proc. K. Akad. Wet. Amst.,1928
4. HILBERT'S FUNCTION IN A LOCAL RING
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献