Differential equations in Banach spaces and the extension of Lyapunov's method

Author:

Lakshmikantham V.

Abstract

The concept of Lyapunov's function is an important tool in studying various problems of ordinary differential equations. In the present paper we shall extend the Lyapunov's method to study some problems of differential equations in Banach spaces. Continuing the theory of one parameter semi-groups of linear and bounded operators founded by Hille and Yoshida, Kato(4) presented some uniqueness and existence theorems for the solutions of linear differential equations of the typewhere A(t) is a given function whose values are linear operators in Banach space. Krasnoselskii, Krein and Soboleveskii (5,6) also considered such equations including non-linear differential equations of the typeMlak (9) obtained some results concerning the limitations of solutions of the latter equation.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference11 articles.

1. Lyapunov's function and boundedness of solutions;Yoshizawa;Funkcial. Ekvac,1959

2. An inequality for approximate solutions of ordinary differential equations

3. On differential equations with unbounded operators in a Hilbert space;Krasnoselskii;Dokl. Akad. Nauk,1957

4. Limitations and dependence on parameter of solutions of non-stationary differential operator equations

5. Differential systems and extension of Lyapunov method;Lakshmikantham;Michigan Math. J,1962

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On some integrodifferential equations in Banach spaces;Bulletin of the Australian Mathematical Society;1975-06

2. Bibliography;Mathematics in Science and Engineering;1972

3. Bibliography;Differential and Integral Inequalities - Theory and Applications: Functional, Partial, Abstract, and Complex Differential Equations;1969

4. Finite time stability and comparison principles;Mathematical Proceedings of the Cambridge Philosophical Society;1968-07

5. General dynamical systems and conditional stability;Mathematical Proceedings of the Cambridge Philosophical Society;1967-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3