Abstract
In a recent paper, Poisson's summation formulawas proved very simply by integration by parts, subject to the conditions:(α) for all real values of x, f(x) and f′(x) are continuous and f (x)→0, f′ (x)→0 as |x| → ∞.(β) f(x) and f″(x) are such that the integrals, converge.
Publisher
Cambridge University Press (CUP)
Reference5 articles.
1. Poisson's Summation Formula and the Riemann Zeta Function;Journal of the London Mathematical Society,1929
2. Die Bedeutungslosigkeit der Pfeiffer'schen Methode für die analytische Zahlentheorie
3. The convention to be adopted for the corners of the parallelogram (3·2) is not as suggested.
4. Neuer Beweis des Satzes von Minkowski �ber lineare Formen
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Poisson Summation Formula in Hardy Spaces $$H^p(T_\Gamma )$$ H p ( T Γ ) , $$p\in (0,1]$$ p ∈ ( 0 , 1 ];Computational Methods and Function Theory;2016-06-09
2. Multi-variate Hardy-type lattice point summation and Shannon-type sampling;GEM - International Journal on Geomathematics;2015-06-27
3. Lattice Functions in $$\mathbb{R}$$;Special Functions of Mathematical (Geo-)Physics;2012-12-15
4. Bessel Functions in $$\mathbb{R}^q$$;Special Functions of Mathematical (Geo-)Physics;2012-12-15
5. Classical Bessel Functions;Special Functions of Mathematical (Geo-)Physics;2012-12-15