On the deep structure of the blowing-up of curve singularities

Author:

ELIAS JUAN

Abstract

Let C be a germ of curve singularity embedded in (kn, 0). It is well known that the blowing-up of C centred on its closed ring, Bl(C), is a finite union of curve singularities. If C is reduced we can iterate this process and, after a finite number of steps, we find only non-singular curves. This is the desingularization process. The main idea of this paper is to linearize the blowing-up of curve singularities Bl(C) → C. We perform this by studying the structure of [Oscr ]Bl(C)/[Oscr ]C as W-module, where W is a discrete valuation ring contained in [Oscr ]C. Since [Oscr ]Bl(C)/[Oscr ]C is a torsion W-module, its structure is determined by the invariant factors of [Oscr ]C in [Oscr ]Bl(C). The set of invariant factors is called in this paper as the set of micro-invariants of C (see Definition 1·2).In the first section we relate the micro-invariants of C to the Hilbert function of C (Proposition 1·3), and we show how to compute them from the Hilbert function of some quotient of [Oscr ]C (see Proposition 1·4).The main result of this paper is Theorem 3·3 where we give upper bounds of the micro-invariants in terms of the regularity, multiplicity and embedding dimension. As a corollary we improve and we recover some results of [6]. These bounds can be established as a consequence of the study of the Hilbert function of a filtration of ideals g = {g[r,i+1]}i [ges ] 0 of the tangent cone of [Oscr ]C (see Section 2). The main property of g is that the ideals g[r,i+1] have initial degree bigger than the Castelnuovo–Mumford regularity of the tangent cone of [Oscr ]C.Section 4 is devoted to computation the micro-invariants of branches; we show how to compute them from the semigroup of values of C and Bl(C) (Proposition 4·3). The case of monomial curve singularities is especially studied; we end Section 4 with some explicit computations.In the last section we study some geometric properties of C that can be deduced from special values of the micro-invariants, and we specially study the relationship of the micro-invariants with the Hilbert function of [Oscr ]Bl(C). We end the paper studying the natural equisingularity criteria that can be defined from the micro-invariants and its relationship with some of the known equisingularity criteria.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. How to determine a curve singularity;Canadian Mathematical Bulletin;2024-01-09

2. On the Canonical Ideals of One-Dimensional Cohen–Macaulay Local Rings;Proceedings of the Edinburgh Mathematical Society;2015-07-13

3. On the Apéry sets of monomial curves;Semigroup Forum;2012-10-23

4. Apery and micro-invariants of a one-dimensional Cohen–Macaulay local ring and invariants of its tangent cone;Journal of Algebra;2011-02

5. A moduli scheme of embedded curve singularities;Journal of Pure and Applied Algebra;2008-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3