Abstract
It is well known that the elements of any given commutative algebra (and hence of any commutative set) of n × n matrices, over an algebraically closed field K, have a common eigenvector over K; indeed, the elements of such an algebra can be simultaneously reduced to triangular form (by a suitable similarity transformation). McCoy (5) has shown that a triangular reduction is always possible even for matrix algebras satisfying a condition substantially weaker than commutativity. Our aim in this note is to extend these results to more general systems (our arguments being, incidentally, simpler than some used for the matrix case even by writers subsequent to McCoy).
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The primary decomposition of a set of matrices;Linear Algebra and its Applications;1991-03