Author:
ARAÚJO JOÃO,BENTZ WOLFRAM,MITCHELL JAMES D.,SCHNEIDER CSABA
Abstract
AbstractLet $\mathcal{P}$ be a partition of a finite set X. We say that a transformation f : X → X preserves (or stabilises) the partition $\mathcal{P}$ if for all P ∈ $\mathcal{P}$ there exists Q ∈ $\mathcal{P}$ such that Pf ⊆ Q. Let T(X, $\mathcal{P}$) denote the semigroup of all full transformations of X that preserve the partition $\mathcal{P}$.In 2005 Pei Huisheng found an upper bound for the minimum size of the generating sets of T(X, $\mathcal{P}$), when $\mathcal{P}$ is a partition in which all of its parts have the same size. In addition, Pei Huisheng conjectured that his bound was exact. In 2009 the first and last authors used representation theory to solve Pei Huisheng's conjecture.The aim of this paper is to solve the more complex problem of finding the minimum size of the generating sets of T(X, $\mathcal{P}$), when $\mathcal{P}$ is an arbitrary partition. Again we use representation theory to find the minimum number of elements needed to generate the wreath product of finitely many symmetric groups, and then use this result to solve the problem.The paper ends with a number of problems for experts in group and semigroup theories.
Publisher
Cambridge University Press (CUP)
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献