Abstract
AbstractA central problem motivated by Diophantine approximation is to determine the size properties of subsets of$\R^d$ ($d\in\N$)of the formwhere ‖⋅‖ denotes an arbitrary norm,Ia denumerable set, (xi,ri)i∈ Ia family of elements of$\R^d\$× (0, ∞) and ϕ a nonnegative nondecreasing function defined on [0, ∞). We show that ifFId, where Id denotes the identity function, has full Lebesgue measure in a given nonempty open subsetVof$\R^d\$, the setFϕbelongs to a class Gh(V) of sets with large intersection inVwith respect to a given gauge functionh. We establish that this class is closed under countable intersections and that each of its members has infinite Hausdorffg-measure for every gauge functiongwhich increases faster thanhnear zero. In particular, this yields a sufficient condition on a gauge functiongsuch that a given countable intersection of sets of the formFϕhas infinite Hausdorffg-measure. In addition, we supply several applications of our results to Diophantine approximation. For any nonincreasing sequenceψof positive real numbers converging to zero, we investigate the size and large intersection properties of the sets of all points that areψ-approximable by rationals, by rationals with restricted numerator and denominator and by real algebraic numbers. This enables us to refine the analogs of Jarník's theorem for these sets. We also study the approximation of zero by values of integer polynomials and deduce several new results concerning Mahler's and Koksma's classifications of real transcendental numbers.
Publisher
Cambridge University Press (CUP)
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献