Singularities of spacelike constant mean curvature surfaces in Lorentz–Minkowski space

Author:

BRANDER DAVID

Abstract

AbstractWe study singularities of spacelike, constant (non-zero) mean curvature (CMC) surfaces in the Lorentz–Minkowski 3-space L3. We show how to solve the singular Björling problem for such surfaces, which is stated as follows: given a real analytic null-curve f0(x), and a real analytic null vector field v(x) parallel to the tangent field of f0, find a conformally parameterized (generalized) CMC H surface in L3 which contains this curve as a singular set and such that the partial derivatives fx and fy are given by df0/dx and v along the curve. Within the class of generalized surfaces considered, the solution is unique and we give a formula for the generalized Weierstrass data for this surface. This gives a framework for studying the singularities of non-maximal CMC surfaces in L3. We use this to find the Björling data – and holomorphic potentials – which characterize cuspidal edge, swallowtail and cuspidal cross cap singularities.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3