The evolution of the stars

Author:

Hoyle F.,Lyttleton R. A.

Abstract

Difficulties associated with the evolution of stars by radiation alone are briefly discussed. It is clear that some other process is also affecting the stars and it is shown that the stars are capable of adding to their mass by the process of accretion of the cosmical cloud. The gravitation of a moving star causes additional collisions of the atoms of the interstellar matter and the motions become randomized to such an extent that the star probably captures all material passing within the distance at which the velocity of the star relative to the cloud is the parabolic velocity. This rate of accretion of mass of a star is 4πγ2ρM23, and is accordingly of great importance for stars of low velocity. Stars of high velocity are least affected by accretion and therefore in general remain of low mass, while stars of low velocity must attain great mass. The periods of time involved in bringing about appreciable changes in the mass of a star are of the order of 5 × 1010 years and are in agreement with independent estimates of the time scale, as deduced, for example, from the companion of Sirius. The evolution of the components and orbits of binary stars are consequences of the accretion process. The more massive component increases in mass more rapidly than the less massive component in the case of wide pairs, and may therefore in general continue to emit more ergs per gram. The orbit evolves in such a way that the total angular momentum remains constant. For equal masses the separation is proportional to the inverse cube of the mass, and the period to the inverse fifth power, so that great changes of separation and period occur. The evolution of the stars is governed almost entirely by their velocities relative to the cosmical cloud. In the case of double stars the evolution takes the form of decreasing period and decreasing separation. Such features as galactic concentration and the correlation between spectral type and velocity are direct results of accretion.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference9 articles.

1. Proc. Cambridge Phil. Soc. 35 (1939), 405.

2. Energy Production in Stars

3. Internal constitution of the stars (Cambridge, 1930), p. 391.

4. Energy Production in Stars

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3