Author:
GUDMUNDSSON SIGMUNDUR,SVENSSON MARTIN
Abstract
AbstractIn this paper we introduce two new methods for constructing harmonic morphisms from solvable Lie groups. The first method yields global solutions from any simply connected nilpotent Lie group and from any Riemannian symmetric space of non-compact type and rank r ≥ 3. The second method provides us with global solutions from any Damek–Ricci space and many non-compact Riemannian symmetric spaces. We then give a continuous family of 3-dimensional solvable Lie groups not admitting any complex-valued harmonic morphisms, not even locally.
Publisher
Cambridge University Press (CUP)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献