Abstract
AbstractAn existence theorem is proved for Robin's integral equation for the density of electric charge on a closed surface, under the assumptions that the surface is convex, smooth and twice continuously differentiable. The technique is essentially Neumann's method of the arithmetic mean, used by Robin himself to show that the solution, assumed to exist, can be successively approximated by a sequence. In order to facilitate the main argument of the proof, it is assumed initially that the Gaussian curvature is everywhere positive, but this restriction is subsequently removed.
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献