Abstract
AbstractCombining Freiman's theorem with Balog–Szemerédi–Gowers theorem one can show that if an additive set has large additive energy, then a large piece of the set is contained in a generalized arithmetic progression of small rank and size. In this paper, we prove the above statement with the optimal bound for the rank of the progression. The proof strategy involves studying upper bounds for additive energy of subsets of ${\mathbb{R}^d$ and ${\mathbb{Z}^d$.
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献