Contributions to the theory of stokes waves

Author:

De S. C.

Abstract

ABSTRACTThe well-known Stokes theory (9, 10) of waves of permanent form in water of finite depth has been extended to the fifth order of approximation. The solutions have been first obtained in the form of equations for the space coordinates x and y as functions of the velocity potential Φ and stream function ψ. Expressions for the complex potential W in terms of the complex variable z ( = x + iy), the form of the wave profile, and the square of the wave velocity have been obtained to the fifth order.Expressions for the three physical quantities Q, R and S, where Q is the volume flow rate per unit span, R is the energy per unit mass (i.e. g times the total head, measuring heights from the bottom and pressures from atmospheric) and S is the momentum flow rate per unit spaa, corrected for pressure forces and divided by density, have been obtained to the fifth order. The values for the dimensionless quantities r = R/Rc and s = S/Sc, where Rc and Sc refer to the values of R and S for a critical stream of volume flow Q, are tabulated for certain values of the ratios mean depth to wavelength and amplitude to wavelength. The values of r and s thus obtained have been used to calculate the ratios of mean depth to wavelength and of wave height to wavelength according to the cnoidal wave theory as recently presented by Benjamin and Light-hill(1), and the results are found to be in satisfactory agreement with that from Stokes's theory for waves longer than six times the depth.The (r, s) diagram introduced in the recent work of Benjamin and Lighthill(1) has been further considered, and the unshaded part of the diagram referred to in that paper has been mapped with a network of curves for constant values of the ratios of mean depth to wavelength and of wave height to wavelength (Fig. 2). The third barrier to the existence of steady flows, corresponding to ‘waves of greatest height’ referred to in that paper, has also been indicated in Fig. 2.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A guide for selecting periodic water wave theories - Le Méhauté (1976)’s graph revisited;Coastal Engineering;2024-03

2. A Fourier Series Approximation for Deep-water Waves;Journal of Ocean Engineering and Technology;2022-04-30

3. On Stokes wave solutions;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2022-02

4. Hydrodynamic analysis of a tethered underwater robot with control equipment subjected to cnoidal waves;Ocean Engineering;2022-01

5. Energy properties of regular water waves over horizontal bottom with increasing nonlinearity;Ocean Engineering;2020-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3