Bounding Sn(t) on the Riemann hypothesis

Author:

CARNEIRO EMANUEL,CHIRRE ANDRÉS

Abstract

AbstractLet $S(t) = {1}/{\pi} \arg \zeta \big(\hh + it \big)$ be the argument of the Riemann zeta-function at the point 1/2 + it. For n ⩾ 1 and t > 0 define its iterates $$\begin{equation*} S_n(t) = \int_0^t S_{n-1}(\tau) \,\d\tau\, + \delta_n\,, \end{equation*}$$ where δn is a specific constant depending on n and S0(t) ≔ S(t). In 1924, J. E. Littlewood proved, under the Riemann hypothesis (RH), that Sn(t) = O(log t/(log log t)n + 1). The order of magnitude of this estimate was never improved up to this date. The best bounds for S(t) and S1(t) are currently due to Carneiro, Chandee and Milinovich. In this paper we establish, under RH, an explicit form of this estimate $$\begin{equation*} -\left( C^-_n + o(1)\right) \frac{\log t}{(\log \log t)^{n+1}} \ \leq \ S_n(t) \ \leq \ \left( C^+_n + o(1)\right) \frac{\log t}{(\log \log t)^{n+1}}\,, \end{equation*}$$ for all n ⩾ 2, with the constants C±n decaying exponentially fast as n → ∞. This improves (for all n ⩾ 2) a result of Wakasa, who had previously obtained such bounds with constants tending to a stationary value when n → ∞. Our method uses special extremal functions of exponential type derived from the Gaussian subordination framework of Carneiro, Littmann and Vaaler for the cases when n is odd, and an optimized interpolation argument for the cases when n is even. In the final section we extend these results to a general class of L-functions.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference25 articles.

1. Gaussian subordination for the Beurling-Selberg extremal problem

2. Bounding ζ(s) in the critical strip

3. A note on the zeros of zeta and L-functions

4. Hilbert spaces and the pair correlation of zeros of the Riemann zeta-function;Carneiro;J. Reine Angew. Math. (Crelle's Journal)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An innovative method and a medical screening device for cancer detection in real-time;Annals of Mathematics and Physics;2023-06-17

2. The second moment of Sn(t) on the Riemann hypothesis;International Journal of Number Theory;2021-12-09

3. Large values of the argument of the Riemann zeta-function and its iterates;Journal of Number Theory;2021-08

4. Bounding the log-derivative of the zeta-function;Mathematische Zeitschrift;2021-07-28

5. Bounds for Zeta and Primes via Fourier Analysis;Trends in Mathematics;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3