Author:
Cochran James A.,Lukas Mark A.
Abstract
AbstractReade[11] has shown that positive definite kernels K(x, t) which satisfy a Lipschitz condition of order α on a bounded region have eigenvalues which are asymptotically O(1/n1+α). In this paper we extend this result to positive definite kernels whose symmetric derivative Krr(x, t) = ∂2rK(x, t)/∂xτ ∂tτ is in Lipα and establish λn(K) = O(1/n2r+1+α). If ∂Krr/∂t is in Lipα, the anticipated asymptotic estimate is also derived.The proofs use a well-known result of Chang [2], recently rederived by Ha [5], and estimates based upon finite rank approximations to the kernels in question. In these latter estimates we employ the familiar piecewise linear ‘hat’ basis functions of approximation theory.
Publisher
Cambridge University Press (CUP)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献