Abstract
1. Introduction: If G is a group, Z(G) its integral group-ring and AG the augmentation ideal, then we can form the Abelian groupsIn (5) we have studied the structure of these Abelian groups which we called polynomial grouups. If C denotes the category of Abelian groups, then Pn and Qn are functors from C into C. We call these functors polynomial functors. The object of this work is to study the nature of these funtors. Except for n = 1, these functors are non-additive. In fact, in the sense of Eilenberg–Maclane (4) these are functors of degree exactly n (Theorem 2·3). Because of their non-additive nature, their derived functors cannot be calculated in the traditional Cartan–Eilenberg(1) method. We have to make use of the more recent theory of Dold–Puppe (3).
Publisher
Cambridge University Press (CUP)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献