Abstract
A method of determining the coefficient of viscosity of a gas of spherically symmetrical molecules under ordinary conditions has been given by Chapman. His result is equivalent towhere m is the mass of a molecule of the gas, T is the absolute temperature, k is Boltzmann's constant 1·372. 10−16 and ε is a small quantity which later investigations on a gas in which the intermolecular force is inversely proportional to the nth power of the distance have shown to vary from zero when n = 5 to 0·016 when n = ∞ (equivalent to molecules which are elastic spheres); it may reasonably be supposed that ε is positive and less than 0·016 in all cases which are likely to be of interest, and it will be neglected in this paper. Alsoπ(r) being the mutual potential energy of two molecules (that is, the repulsive force between them is − ∂π/∂r), and r0 the positive zero of the expression in the denominator, or the largest such positive zero if there are several.
Publisher
Cambridge University Press (CUP)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献