Abstract
In (4) the classification of (complex, projective) cubic surfaces by the number and nature of their singularities is carried out. This gives a natural partition of the vector space of cubic surfaces (which we denote by H3(4, 1)). In this paper we investigate the differential geometric properties of this partition; we show that it provides a finite constructible stratification of H3(4,1) which, in the notation of (10), is Whitney (A) regular. In fact Whitney (B) regularity holds over each stratum other than E6, but this stratum of cubic cones has an exceptional (equianharmonic) orbit at which (B) regularity fails. It remains to be seen whether or not this is the only exceptional orbit.
Publisher
Cambridge University Press (CUP)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献