Abstract
Here we describe our results and their background: terminology (mostly standard) is denned in Section 2. Throughout, F is a separable Banach space, 1 ≤ p < ∞ and Lp(F) is the space of measurable functions [0,1] → F with P-integrable norms. Given a ‘nice’ property P for Banach spaces, we may formulate the conjecture: Lp(F) satisfies P if and only if both F and Lp (= LP(ℝ)) satisfy P. This conjecture is known to be true for various specific properties, for example the Radon–Nikodym property ((4), section 5·4); reflexivity ((4), corollary 4·1·2); super-refiexivity ((12), proposition 1·2); B-convexity ((14), p. 200); and the properties of not containing copies of c0 (6) and l1 (13). The object of this paper is to demonstrate that the conjecture is false for the property of having an unconditional basis – this answers a question in (4).
Publisher
Cambridge University Press (CUP)
Reference14 articles.
1. A Remarkable Series of Orthogonal Functions (I)
2. On Banach spaces containing co;Kwapien;Studia Math.,1974
3. (13) Pisier G. Une propriété de stabilité de la classe des espaces ne contenant l 1. (Preprint.)
4. Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach
5. (8) Maurey B. Système de Haar (Seminaire Maurey–Schwartz 1974/5, Ecole Polyteohnique, Paris, 1975).
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献