Abstract
In considering the statistics of the ‘no-field’ square Ising lattice in which each unit is capable of two configurations and only nearest neighbours interact, Kramers and Wannier (3) were able to deduce an inversion transformation under which the partition function of the lattice is invariant when the temperature is transformed from a low to a high (‘inverted’) value. The important property of this inversion transformation is that its fixed point gives the transition point of the lattice.
Publisher
Cambridge University Press (CUP)
Cited by
1832 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献