Abstract
Let p be a prime number, and let K be a finite extension of the rational p-adic field ℚp. Let L/K be a finite abelian extension with Galois group G, and let L, K denote the valuation rings of L, K respectively. Then L is a free module of rank 1 over the group algebra KG. Defining the associated order of the extension L/K byL can be viewed as a module over the ring , and a fortiori over the group ring KG.
Publisher
Cambridge University Press (CUP)
Reference7 articles.
1. [2] Burns D. . Private communication with the author (1990).
2. Local Fields
3. Arithmétique d'une extension galoisienne à groupe d'inertie cyclique
4. Sur les idéaux d'une extension cyclique de degré premier d'un corps local;Ferton;C. R. Acad. Sci. Paris,1973
5. Sur l'anneau des entiers d'une extension biquadratique d'un corps 2-adique;Martel;C. R. Acad. Sci. Paris,1974
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献