Abstract
The power and appropriateness of renewal theory as a tool for the solution of general problems concerning counters has been amply demonstrated by Feller (7), who considered a variety of counter problems and reduced them to special renewal processes. The use of what may be called renewal-type arguments had certainly been made by authors other than Feller (e.g. in § 3 of Domb (3)), but it was only in (7) that the simplicity of the renewal approach to counter problems was recognized and systematically applied. More recently, Hammersley (8) was concerned with the generalization of a counter problem previously studied by Domb (2). This problem may be introduced, mathematically, as follows. Let {xi}, {yi} be two independent sequences of independent non-negative random variables which are non-zero with probability one (i.e. two independent renewal processes). The {xi}, are distributed in a negative-exponential distribution with mean λ-1, and we write Eλ for their distribution function and say ≡ {xi} is a Poisson process to imply this special property of ; the {yi} have a distribution function ‡ B(x) with mean b1 ≤ ∞. Form the partial sums and define ni to be the greatest integer k such that Xk ≥ t, taking X0 0 and nt = 0 if x1 > t. Then define the stochastic processHammersley'sx counter problem concerns the stochastic process
Publisher
Cambridge University Press (CUP)
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献