Minimal projections in Lp-spaces

Author:

Halton E. J.,Light W. A.

Abstract

Let X be a normed linear space and let W be a proper subspace of X. A projection is a surjective linear map P: XW such that P is idempotent. It is immediately clear that P has norm at least unity. Thus the problem of calculating the numberhas some interest. The number λ(W, X) is often called the relative projectiion constant of W in X. If the infimum is attained, any attaining projection is called a minimal projection. The problems of calculating λ(W, X) for a fixed X and W or finding a minimal projection turn out to be very dificult. For example, if X = C [0, 1] with the usual supremem norm and W is the subspace of polynominals of degree at most two then λ(W, X) remains unknown as does any example of a minimal projection. One of the few places where the problem shows much tractability is the case

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference6 articles.

1. Quelques remarques sur l'interpolation;Mahcinkiewicz;Acta Litt. ac. Scient. Szeged,1937

2. Positive and minimal projections in function spaces

3. Minimal projections in bivariate function spaces

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Where there?s a Will there?s a way ? the research of Will Light;Numerical Algorithms;2005-07

2. Minimal projections in spaces of functions of N variables;Journal of Approximation Theory;2003-08

3. Uniqueness of Minimal Projections in Smooth Matrix Spaces;Journal of Approximation Theory;2000-12

4. Minimal projections in tensor-product spaces;Mathematische Zeitschrift;1986-12

5. Minimal Projections in Tensor Product Spaces;Multivariate Approximation Theory III;1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3