Abstract
AbstractLet G be a locally compact group and L1(G) be the group algebra of G. We show that G is abelian or compact if every continuous automorphism of L1(G)** maps L1(G) onto L1(G) This characterizes all groups with this property and answers a question raised by F. Ghahramani and A. T. Lau in [7]. We also show that if G is a compact group and θ is any (algebra) isomorphism from L1(G)** onto L1(H)**, then H is compact and θ maps L1(G) onto L1(H).
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Isometric isomorphisms of Beurling algebras;Journal of Mathematical Analysis and Applications;2016-06