On the set of zero coefficients of a function satisfying a linear differential equation

Author:

BELL JASON P.,BURRIS STANLEY N.,YEATS KAREN

Abstract

AbstractLet K be a field of characteristic zero and suppose that f: K satisfies a recurrence of the form \[ f(n) = \sum_{i=1}^d P_i(n) f(n-i), \] for n sufficiently large, where P1(z),. . .,Pd(z) are polynomials in K[z]. Given that Pd(z) is a nonzero constant polynomial, we show that the set of n for which f(n) = 0 is a union of finitely many arithmetic progressions and a finite set. This generalizes the Skolem–Mahler–Lech theorem, which assumes that f(n) satisfies a linear recurrence. We discuss examples and connections to the set of zero coefficients of a power series satisfying a homogeneous linear differential equation with rational function coefficients.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference35 articles.

1. Algebraic Number Theory

2. Une démonstration simple du théorème de Skolem-Mahler-Lech

3. Symmetric functions and P-recursiveness

4. Über den Wertevorrat von Potenzreihen im Gebiet der p-adischen Zahlen;Strassman;J. Reine Angew. Math.,1928

5. A Course in p-adic Analysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An extension of holonomic sequences: C2-finite sequences;Journal of Symbolic Computation;2023-05

2. The Membership Problem for Hypergeometric Sequences with Rational Parameters;Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation;2022-07-04

3. On C 2 -finite Sequences;Proceedings of the 2021 on International Symposium on Symbolic and Algebraic Computation;2021-07-18

4. Skolem–Mahler–Lech type theorems and Picard–Vessiot theory;Journal of the European Mathematical Society;2015

5. Formulae and Asymptotics for Coefficients of Algebraic Functions;Combinatorics, Probability and Computing;2014-12-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3