Cup-products for the polyhedral product functor

Author:

BAHRI A.,BENDERSKY M.,COHEN F. R.,GITLER S.

Abstract

AbstractDavis–Januszkiewicz introduced manifolds which are now known as moment-angle manifolds over a polytope [6]. Buchstaber–Panov introduced and extensively studied moment-angle complexes defined for any abstract simplicial complex K [4]. They completely described the rational cohomology ring structure in terms of the Tor-algebra of the Stanley-Reisner algebra [4].Subsequent developments were given in work of Denham–Suciu [7] and Franz [9] which were followed by [1, 2]. Namely, given a family of based CW-pairs X, A) = {(Xi, Ai)}mi=1 together with an abstract simplicial complex K with m vertices, there is a direct extension of the Buchstaber–Panov moment-angle complex. That extension denoted Z(K;(X,A)) is known as the polyhedral product functor, terminology due to Bill Browder, and agrees with the Buchstaber–Panov moment-angle complex in the special case (X,A) = (D2, S1) [1, 2]. A decomposition theorem was proven which splits the suspension of Z(K; (X, A)) into a bouquet of spaces determined by the full sub-complexes of K.This paper is a study of the cup-product structure for the cohomology ring of Z(K; (X, A)). The new result in the current paper is that the structure of the cohomology ring is given in terms of this geometric decomposition arising from the “stable” decomposition of Z(K; (X, A)) [1, 2]. The methods here give a determination of the cohomology ring structure for many new values of the polyhedral product functor as well as retrieve many known results.Explicit computations are made for families of suspension pairs and for the cases where Xi is the cone on Ai. These results complement and extend those of Davis–Januszkiewicz [6], Buchstaber–Panov [3, 4], Panov [13], Baskakov–Buchstaber–Panov, [3], Franz, [8, 9], as well as Hochster [12]. Furthermore, under the conditions stated below (essentially the strong form of the Künneth theorem), these theorems also apply to any cohomology theory.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A generalization of moment-angle manifolds with noncontractible orbit spaces;Algebraic & Geometric Topology;2024-03-18

2. Dga Models for Moment-Angle Complexes;Fields Institute Communications;2024

3. On the (co)homology of (quotients of) moment-angle manifolds over polygons;Acta Mathematica Scientia;2022-08-30

4. Small Covers and Quasitoric Manifolds over Neighborly Polytopes;Mediterranean Journal of Mathematics;2022-03-18

5. Non-trivial higher Massey products in moment-angle complexes;Advances in Mathematics;2021-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3