Abstract
Introduction. If ξ is a real number we denote by ∥ ξ ∥ the difference between ξ and the nearest integer, i.e.It is well known (e.g. Koksma (3), I, Satz 4) that if θ1, θ2, …, θn are any real numbers, the inequalityhas infinitely many integer solutions q > 0. In particular, if α is any real number, the inequalityhas infinitely many solutions.
Publisher
Cambridge University Press (CUP)
Reference6 articles.
1. Ya. Zur Theorie der Diophantischen Approximationen;Khintchine;Mat. Sborn,1925
2. Zwei Bemerkungen zu einer Arbeit des Herrn Perron
3. Diophantische Approximationen;Koksma;Ergebn. Math,1935
4. �ber das Ma� der Menge allerS-Zahlen
5. (6) (C.R. Acad. Sci. U.R.S.S.), 67 (1949), 783–6.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. John William Scott (‘Ian’) Cassels. 11 July 1922 — 27 July 2015;Biographical Memoirs of Fellows of the Royal Society;2023-03-29
2. Bibliography;North-Holland Mathematical Library;1987
3. Exact order of approximation to almost all points of a parabola;Mathematical Notes of the Academy of Sciences of the USSR;1979-11
4. BIBLIOGRAPHY;Geometry of Numbers;1969
5. Metrische S�tze �ber simultane Approximation abh�ngiger Gr��en;Monatshefte f�r Mathematik;1964-04