On the iteration of a continuous mapping of a compact space into itself

Author:

Friedlander F. G.

Abstract

1. The questions considered in this note are suggested by the elementary topology of the trajectories of systems of non-linear differential equations. Such a system may be assumed in the formand the values of the dependent variables x1, x2, …, xn at ‘time’ t can be represented by a point P(t) in a ‘phase space’ . As t varies, P(t) describes a curve in , which is a trajectory of (1). Now it often happens that contains a subspace E (usually of lower dimension) with the following properties: (i) by considering the trajectories generated by points P(t) which are, for t = 0, in E, all the trajectories of (1) are obtained; (ii) if P(0) is in E, then P(t) is not in E for 0 < t < c, where c is a constant independent of P(0) in E; (iii) if P(0) is in E, then the trajectory meets E again for some finite t at a point P(T) (T is not necessarily the same for all points of E). By considering P(T) as the image of P(O), a mapping of E into itself is defined which is associated with the system (1), and the topology of the trajectories of (1) can be studied conveniently by discussing this mapping. When the functions fi in (1) satisfy the continuity and Lipschitz conditions of the classical existence-and-uniqueness theorem, the mapping is one-one and continuous. The study of this ‘transformation theory’, initiated by Poincaré, has been developed chiefly by G. D. Birkhoff(l,2). His results have been applied to problems of ‘non-linear mechanics’ by N. Levinson(3).

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference10 articles.

1. Topological Properties of the Solutions of Ordinary Differential Equations

2. Structure analysis of surface transformations;Birkhoff;J. Math.,1928

3. Sur les courbes definies par les equations differentielles à la surface du tore;Denjoy;J. Math.

4. Surface transformations and their dynamical applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3