Degenerate curves and harmonic analysis

Author:

Drury S. W.

Abstract

This article deals with several related questions in harmonic analysis which are well understood for non-degenerate curves in ℝn, but poorly understood in the degenerate case. These questions invariably involve a positive ‘reference’ measure on the curve. In the non-degenerate case the choice of measure is not particularly critical and it is usually taken to be the Euclidean arclength measure. Since the questions considered here are invariant under the group of affine motions (of determinant 1), the correct choice of reference measure is the affine arclength measure. We refer the reader to Guggenheimer [8] for information on affine geometry. When the curve has degeneracies, the choice of measure becomes critical and it is the affine arclength measure which yields the most powerful results. From the Euclidean point of view the affine arclength measure has correspondingly little mass near the degeneracies and thus compensates automatically for the poor behaviour there. This principle should also be valid for general submanifolds of ℝn but alas the affine geometry of submanifolds is itself not well understood in general.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Uniform maximal Fourier restriction for convex curves;Annali di Matematica Pura ed Applicata (1923 -);2024-01-18

2. Strichartz estimates for mixed homogeneous surfaces in three dimensions;Analysis & PDE;2023-04-14

3. Loomis–Whitney inequalities in Heisenberg groups;Mathematische Zeitschrift;2022-02-09

4. On the Oberlin affine curvature condition;Duke Mathematical Journal;2019-08-15

5. Convolution estimates for measures on some complex curves;Annali di Matematica Pura ed Applicata (1923 -);2018-11-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3