Abstract
1. An elegant theorem due to Tarski states that a completely distributive complete Boolean algebra is isomorphic with a lattice of sets, and in fact the lattice of all the subsets of some aggregate. The obvious generalization of the question underlying this theorem is to ask whether one can pick out by means of a distributivity condition those lattices (not necessarily Boolean algebras) which are isomorphs of lattices of sets. The answer is no. The real numbers with their natural order form a complete lattice which satisfies the strongest possible distributivity conditions and yet is not iso-morphic with any lattice of sets.
Publisher
Cambridge University Press (CUP)
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献