Author:
FUKUHARA SHINJI,YANG YIFAN
Abstract
AbstractLet Sw+2(Γ0(N)) be the vector space of cusp forms of weight w + 2 on the congruence subgroup Γ0(N). We first determine explicit formulas for period polynomials of elements in Sw+2(Γ0(N)) by means of Bernoulli polynomials. When N = 2, from these explicit formulas we obtain new bases for Sw+2(Γ0(2)), and extend the Eichler–Shimura–Manin isomorphism theorem to Γ0(2). This implies that there are natural correspondences between the spaces of cusp forms on Γ0(2) and the spaces of period polynomials. Based on these results, we will find explicit form of Hecke operators on Sw+2(Γ0(2)). As an application of main theorems, we will also give an affirmative answer to a speculation of Imamoglu and Kohnen on a basis of Sw+2(Γ0(2)).
Publisher
Cambridge University Press (CUP)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献