On counters with random dead time. I

Author:

Hammersley J. M.

Abstract

The following work was undertaken in connexion with a device for counting blood cells electronically, which has been developed in the Clinical Pathology Department of the Radcliffe Infirmary with financial assistance from the Medical Research Council and the Nuffield Foundation. Although the results will apply to other types of counter, it will help to fix the ideas if we consider the problem for this specific device. A large number of blood cells, contained in a shallow chamber, are scanned by a photoelectric cell. The depth of the chamber and the concentration of blood cells in solution therein allow blood cells (supposed distributed at random throughout the chamber) to overlap when viewed from above by the scanner. The field of view of the scanner at any instant is somewhat larger than the size of a blood cell, but is, nevertheless, of much the same order of magnitude. With passage of time the chamber moves underneath the photocell so that the field of view traces out a long narrow path not crossing or overlapping itself and only embracing a portion of. the whole chamber. The blood cells have no motion relative to the chamber. As each blood cell comes under the photocell it produces an electrical impulse, whose duration depends upon the size and shape and orientation of the blood cell. These impulses go to a counter, which counts them except that it will not count any impulse which is overlapped by a previous impulse. The problem is to determine the number of blood cells in the chamber from a knowledge of the recorded count and the distribution of the lengths of individual impulses. A further complication arises because it is inadvisable to count two impulses separated only by a very short interval of time, and therefore the counter itself generates some self-paralysing impulses additional to the blood-cell impulses and in a manner which is correlated with them. Until § 3, however, we shall neglect paralysis, because a proper understanding of its effects cannot be reached unless we first know how the system behaves in the absence of paralysis.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3