Abstract
1. Introduction. The spaces L1 and L2 of unbounded operators associated with a regular gauge space (von Neumann algebra equipped with a faithful normal semi-finite trace) are defined by Segal(5) definitions 3.3, 3.7. The spaces Lp (1 < p < ∞, p ± 2) are defined by Dixmier(2) as the abstract completions of their bounded parts. Dixmier makes use of the Riesz convexity theorem to prove the Hölder inequality, and the uniform convexity, and hence reflexivity, of LLp (2 < p < ∞).
Publisher
Cambridge University Press (CUP)
Reference7 articles.
1. Rearrangements de fonctions et inégalités de convexité dans les algébres de von Neumann munies d'une trace;Grotthendieck;Séminaire Bourbaki,1955
2. A Non-Commutative Extension of Abstract Integration
3. On Ideals of Operators in Hilbert Space
4. Formes linéaires sur un anneau d'opérateurs
Cited by
127 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献